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Abstract

The recovery of approximately sparse or compressible coefficients in a polynomial chaos expansion
is a common goal in many modern parametric uncertainty quantification (UQ) problems. However,
relatively little effort in UQ has been directed toward theoretical and computational strategies for
addressing the sparse corruptions problem, where a small number of measurements are highly corrupted.
Such a situation has become pertinent today since modern computational frameworks are sufficiently
complex with many interdependent components that may introduce hardware and software failures,
some of which can be difficult to detect and result in a highly polluted simulation result.

In this paper we present a novel compressive sampling-based theoretical analysis for a regularized t1
minimization algorithm that aims to recover sparse expansion coefficients in the presence of measure-
ment corruptions. Our recovery results are uniform (the theoretical guarantees hold for all compressible
signals and compressible corruptions vectors), and prescribe algorithmic regularization parameters in
terms of a user-defined a priori estimate on the ratio of measurements that are believed to be corrupted.
We also propose an iteratively reweighted optimization algorithm that automatically refines the value of
the regularization parameter, and empirically produces superior results. Our numerical results test our
framework on several medium-to-high dimensional examples of solutions to parameterized differential
equations, and demonstrate the effectiveness of our approach.
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1 Introduction

The approximation of function values using point evaluations or samples is necessary in a wide number
of applications. Much attention has been focused recently on the approximation technique of compressive
sampling (CS): The ability to recover sparse linear representations of a function from a given dictionary.
This is a particularly important problem in parametric uncertainty quantification (UQ) where the number of
parameters translates into the number of variables on which an unknown function depends (the "dimension"
of the problem). It is common for dimension to be very large, and the number of degrees of freedom in
classical approximation strategies generally grows exponentially with the dimension. This makes classical
computational procedures for approximating functions infeasible for large dimensions.

In contrast, compressive sampling seeks a sparse representation of a function using only a small number
of samples or measurements, regardless of the parametric dimension. In a non-intrusive UQ pipeline,
each function sample corresponds to a potentially large-scale simulation, and so minimizing the requisite
number of samples is desirable. When functions are sparse or compressible in a given basis or dictionary, this
reconstruction procedure has the potential to mitigate the exponentially debilitating curse of dimensionality.
Algorithms in UQ that utilize compressive sampling have enjoyed great success in recent years [43, 42, 44,
27, 18, 10, 17, 15, 22]. For related theoretical contributions, see [1, 2, 8, 16, 29, 28, 41].

Missing from the sparse recovery UQ contributions above is a concrete strategy for fault-tolerant or
resilient algorithms. Ensuring modeling resilience for UQ in the presence of system failures is essential for
credible prediction on new and emerging massively parallel systems. Fault-tolerant algorithms in general
have become necessary in computational science since node failures on distributed architectures can yield
corrupted data (the frequency of which increases as the number of processors increases), or algorithmic
run-time software failures can result in polluted simulation results. These failures can generate polluted
measurements in unpredictable and sometimes undetectable ways [6].

Faults can occur due to complex combination of internal and external conditions that are difficult to
reproduce. For example, bits may suffer random corruption, or physical defects in hardware may cause
data faults. Corruption errors during model simulation can be grouped into two main types, soft and hard.
In this paper, we consider hard faults as errors that cause the simulation to terminate prematurely and/or
return obvious, automatically detectable error values such as NaN or Inf. Hard faults by this definition are
easy to identify and mark for discard, thus obviating or ameliorating the need for fault-tolerant algorithms.

In contrast, soft failures are essentially random systematic corruption of results that are not easily
identifiable. These soft failures pose challenges in UQ: A soft failure will not cause obvious failure in fault-
intolerant UQ methods; however, incorrect model values caused by soft failures can significantly degrade
an approximation. It is in this case that we require the development of robust and resilient algorithms that
can, ideally, deliver constant levels of performance when faced with a few highly corrupted data points.

To address this issue, fault-tolerant algorithms for UQ have been investigated in the context of multilevel
Monte Carlo algorithms [24, 25, 26], and in overdetermined least-squares polynomial recovery problems
[31]. To the best of our knowledge, there is no comprehensive research in the UQ literature on fault-
tolerant sparse recovery algorithms, and in the compressive sampling literature only a handful of papers
[19, 21, 23, 32, 33, 34, 35, 39] deal with the problem of corrupted measurements.

The operative distinction in the problem we consider in this paper is a hardware or software fault result-
ing in occasional large-magnitude errors; we call this the problem of corruptions. Existing CS algorithms
are known to be stable with respect to small noise perturbations, but cannot handle sparse corruptions,
i.e., situations when a small number of samples are highly corrupted with the corruption magnitudes much
larger than typical noise. In this paper we present novel theory and application studies of a sparse cor-
ruptions algorithm for CS. The algorithm we use was considered in [21], but we present more general
theoretical guarantees on recovery, including practical guidance for the choice of algorithmic regularization
parameters.

For fault-tolerance in the context of the sparse recovery problem, the recovery properties of an ideal
resilient algorithm would be agnostic to large-magnitude corruptions in a small number of function samples.
As described above, these corruptions can arise due to unknown failure modes in computational models
or because of large but intermittent measurement errors. Development of mathematical theory for the
corrupted compressive sampling problem, and investigation of a corresponding resilient algorithm for sparse
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recovery of expansion coefficients are the central goals of this paper. The target applications we investigate
are exemplars of a common task in UQ: recovery of approximately sparse expansion coefficients in an
orthogonal polynomial (polynomial chaos) basis.

The theory and algorithms developed in this paper have the following features:

• The compressive sampling recovery theorems are uniform with respect to the function and the corrup-
tions. That is, the recovery guarantees hold over all compressible functions having sparsely corrupted
measurements for a single random sampling of measurements.

• The algorithm involves a tunable regularization parameter A, and a theoretically optimal choice of
this parameter is explicitly determined by our analytical results. This theoretically optimal value
is defined only by the ratio of measurement corruptions to signal sparsity. Since signal sparsity is
frequently comparable to the number of measurements, this optimal A loosely translates into the
fraction of measurement samples that are corrupted. From a user's point of view, our analysis thus
suggests a value of A having knowledge only of the ratio of measurements believed to be corrupted.

• In experiments, we observe that optimal values of the regularization parameter are non-trivially
dependent on the number of measurements, the signal sparsity, and the number of corruptions. We
thus propose an iteratively reweighted algorithm for recovery that learns values of the regularization
parameter. Our experiments suggest that these learned algorithmic parameters perform better than
the value defined by our theoretical results, and thus this reweighted algorithm is more useful in
practice.

• The location and magnitude of the corruptions amongst the collection of function samples can be
unknown, but the algorithm recovers those locations and the corresponding corruption values.

• The algorithm is robust to small, but non-sparse measurement errors — e.g. due to noise, truncation
of an infinite polynomial expansion or numerical error in computing function samples — and moreover
is noise-blind. That is to say, it requires no a priori upper bound on such errors.

• The optimization problem we solve to compute solutions is from [21], but our work is both a theoretical
and practical advancement over the results in that reference. In order to show the solution computed
is indeed the original sparse solution, [21] uses conditions on the restricted isometry constant (RIC) of
the measurement matrix. Our results are a significant relaxation of previously reported conditions on
the RIC (compare conditions on 62s,2k in Lemma 2.3 of [21] versus our Theorem 3.7, equation (3.8),
and the discussion in Section 3.4). The results for general sensing matrices in [21] are nonuniform
with respect to the signal and corruptions support, and require certain models for the signal and
corruptions; our results are uniform and require no model for the signal or corruptions, other than
compressibility. Finally, our paper is also devoted to numerical investigation of the performance of
the method, including practical guidance for choosing the regularization parameter A; such thorough
investigations are absent in [21].

We first introduce notation and summarize the main mathematical statements of this paper in Section 2.
This is followed in Section 3 by our theoretical analysis. Section 4 presents numerical results to complement
our theoretical analysis and verify the practical efficacy of the algorithm.

2 Model problem and main results

Let f : Rd R denote an unknown function, and let {03}7 1 be a given dictionary of functions, 03 :

Rd —> R. For example, the functions 03 are frequently multivariate polynomial chaos basis elements; our
capstone numerical examples will show results from such a basis. In scenarios of interest, the size N of the
dictionary is very large.

The ultimate goal is to recover coefficients x3 that determine the approximation

N

f(0 = Ex.oj(o + ng), (2.1)

3



using samples of f , where n(0 is an assumed small discrepancy term between the exact function and its
N-term linear approximation in Oil. For the purposes of exposition we assume 1n(01 < E for some known
uniform noise bound e; we will show later that lack of a priori knowledge for this bound only affects
theoretical results in benign ways. As described above, we assume the vector x = (x1, . . . ,xN)T E RN to
be compressible. Sparsity or compressibility of a vector can be quantified via its best s-term approximation
error,

as(x)p = inf 11x Xl1P

where 11 • 11p is the standard V' norm on vectors; for p = 0, llx110 is the sparsity of x, i.e., the number of
non-zero elements in the vector.

With M, , c Rd a collection of samples of we have the corresponding corrupted function
measurements,

N

Yk = f(G) + Ck = Ex30.2(6,)+ n (4) ck, k =1,...m,
j=1

where the corruption vector c = (ci, . . . cm)T e Rm is assumed to be k-sparse but can have large entries.
To enforce an underdetermined system, we assume m < N. Defining the rectangular matrix A with entries
(A)j,k = (.7) , then the unknown vectors x and c satisfy the underdetermined linear system

y=Ax+c+nERrn. (2.2)

In order to compute the solution (x, c) having knowledge of only A and y , we consider the following model
problem (see also [21] and references therein):

zEC--,dE
Tin

em 
1141 + A11d113 subject to 11Az + d — yII2 < bri• (2.3)

Let a) be a minimizer of this problem, where x E NN and C E Rm. Our objective is to obtain conditions
on A (in particular, on the number of measurements m) and A such that the error

11X — x112 +11c —

can be bounded by the best approximation numbers as (x)i and ak(c)1, and the noise magnitude E.

2.1 Main results

In all that follows, the statement a < b means a < Cb for some universal constant C. Our first main
result shows that stable and robust recovery of x and c is implied by a certain modification of the classi-
cal Restricted Isometry Property (RIP) which incorporates the sparse corruptions term (Definition 3.5).
Specifically, Theorem 3.7 establishes that if the matrix A satisfies the RIP for the corruptions problem of
order (2s, 2k) (see Definition 3.5) with constant 82s,2k satisfying

(528,2k <
1

1+  2 1-..j1)2'

s Azk

= min {s, A2k}'

then the following error bounds hold:

11x — Xlli + — as(x)i + Auk(c)i + EN/s + A2k,

Ilx ±I12 + Ilc (1+ 771") (as(x)i + ak(C)1 +
'\79 Na 6

(2.4)

(2.5a)

(2.5b)

1Our notation suggests that n = n(e) depends explicitly and deterministically on e; however, our theory encompasses the
case when n is a stochastic variable or process, e.g., independent Gaussian random variable additive perturbations of the
measurements.
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Our second main result (Theorem 3.15) provides explicit conditions on in, s and k for (2.4) to hold for
matrices of so-called bounded orthonormal system [12, Chpt. 12]. Specifically, suppose that {03}/3v_1 is an

LL(D)-orthonormal system, where v is a probability measure and D c Rd its support. Define

and let A = {0i(W17,2A.

K := max sup < oo,
j=1,...,N •ED

where 6, , Gri are drawn i.i.d. according to v. If

m 8-2 •  K2 s (log3 (2s) • log(2N) + log c-1) ,

m > 6-2 • K • s • k,

then with probability at least 1 — E, the restricted isometry constant 62s,2k of the scaled matrix #n A

satisfies 628,2k < 8.
One can see from these estimates that optimizing n over values of A yields a minimum value of n = 2

when A2 = s/k. Assuming m, this provides a concrete determination of the parameter A for use in
(2.3) having knowledge only of the ratio of corrupted measurements. We note in passing that we do not
believe that the second condition in (2.6) is sharp in the dependence on the product s • k. Improvement of
this to a condition of the form

(2.6)

m> 6-2 • K • k, (2.7)

is left as a topic for future work. Note that such a condition is known for Gaussian random matrices. More-
over, a nonuniform recovery result with the scaling (2.7) for exactly sparse coefficients x and corruptions
c having random sign patterns was given in [21]. See Section 3.3 for further discussion.

It is common in compressed sensing to assume some a priori known noise bound € based on the user's
knowledge of measurement noise or truncation error. Although there are some results that circumvent this
assumption [1, 2], they typically yield somewhat weaker recovery guarantees. However, in the context of the
sparse corruptions theory presented above, such prior knowledge of € is not necessary for stable recovery:
The error introduced by an unknown noise E can be passed into theoretical estimates as a penalty of size
€. To see this, note that if we define c' := (c + n), then the system y = Ax + c+ n can be written as

v171- - vTIL
— ÷—Ax + c'. Solving (2.3) by setting E = 0 results in the c = 0 version of the estimate (2.5b) with

c' replacing c. However, the normalized best k-term approximation error to c' appearing in (2.5b) is stable
with respect to noise perturbations:

ak(Cf)1 1 Ok(C)1 
<   (0- k (01 + 041) < +

A/Tc '\//n \/krn

m
—E.

Here c > 11n11. is any bound for the perturbation n in the uniform norm. Using (2.7), we see that v7c < E,
which is on the same order as the estimate (2.5b) that uses a priori knowledge of c. A similar argument
holds for the bound (2.5a).

While our theoretical results are thus insensitive to ignorance about small noise levels, we caution that
it is always a good idea to use such information in practical recovery algorithms if available, e.g. as the
result of cross validation. See, for example, [10, 43, 17].

2.2 Remarks on numerical results

We postpone presenting numerical results until the end of this paper in Section 4. However, some remarks
on our findings are pertinent here in the context of the previous section's theory. First, the optimal value
of A2 = s/k that is suggested by (2.4) does not appear to be the computationally optimal value of A. That
this fixed value of A is not the best is not surprising since the bounds (2.5) are derived using some loose
inequalities. However, such bounds can be useful in understanding qualitative trends. Results from our
experimentation do suggest that large values of A more reliably recover corruptions when s/k is large (see
Figures 1 and 2). This general trend in numerical results is consistent with the behavior of 7/ in (2.4) as a
function of A when s/k is large.
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m number of measurements

N length of sparse vector

x sparse vector in CN

c corruptions vector in Cm

A m x N measurement matrix

n noise vector in Cm

e noise bound

non-negative weighting parameter for the corruptions vector

5c , c solutions of the optimization problem

S subset of {1, , N}, indices corresponding to x

T subset of {1, , m}, indices corresponding to c

s sparsity of x

k sparsity of c

Es set of s-sparse vectors in CN

Ek set of k-sparse vectors in Cm

vs(x)1 best s-term approximation error, measured in the t1 norm

o-k(c)i best k-term approximation error, measured in the t1 norm

Table 1: Notation used throughout this article.

We address this discrepancy between the theory and empirical results by propose an iteratively reweighted
t1 optimization scheme (see [7]) that learns and updates the value of À. Our results show that this pro-
posed algorithm performs much better in practice than algorithms that fix À. However, we do not present
any theory to support the observed superiority of reweighted t1 optimization schemes for the corruptions
problem.

Many of our capstone numerical examples are from applications using polynomial chaos expansions,
where the compressible function has an expansion in a multivariate orthogonal polynomial basis. To
simplify the presentation of our results, we focus on such examples where the basis is a tensor-product
Legendre polynomial or Chebyshev polynomial system. Much recent work has shown that randomly
generating measurements using samples from standard distributions (e.g., the uniform distribution) can
accurately and near-optimally recover orthogonal polynomial expansions from such basis sets [28, 17, 41].
Recovery in more general polynomial spaces has been investigated [16, 18, 15], but these methods usually
rely on sophisticated sampling strategies and optimal sampling schemes are still an active area of research.

3 Theory for the sparse corruptions problem

We recall and summarize our notation for the sparse corruptions problem in Table 1. Our previous
discussion was framed for real-valued signals x and measurements y, but we now generalize to the complex-
valued setting. This adds generality with no additional mathematical difficulty.

We follow a familiar path for deriving conditions on m such that t1 optimization problems recover
sparse solutions (see, for example, [12]). Section 3.1 defines an appropriate robust Null Space Property
(NSP) for the matrix A in the sparse corruptions setting. Under this property, we show that the recovery
estimates (2.5) hold. In order to construct matrices A that satisfy the robust NSP, Section 3.2 generalizes
the concept of the Restricted Isometry Property (RIP) for matrices to the sparse corruptions setting. That
section shows that matrices satisfying the RIP for the sparse corruptions problem also satisfy the robust
NSP. Sections 3.3 and 3.3.2 show that if the dictionary elements 03 form a bounded orthonormal system,
then under the condition (2.6), the matrix A satisfies the RIP with high probability. Finally, using these
various results, we discuss a theoretically-optimal choice for in Section 3.4.

3.1 The Robust Null Space Property for the sparse corruptions problem

The following two definitions are generalizations of robust null space properties (cf. [12, Definition 4.17]
and [12, Definition 4.21], respectively), and prescribe classes of matrices whose kernels do not contain
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sparse vectors.

Definition 3.1. Let 1<s<N,1<k<m and A > O. A matrix A E Cm'N satisfies the £1 -robust null
space property of order (s, k) with weight if there exist constants 0 < p <1 and r > 0 such that

Ilx + (11xsch + AIICAI1) + rIlAx + V x E CN , c E Cm ,

for all sets S C {1, ... ,N} and T C {1, m} with ISI < s and IT1 < k. Above, SC is the complement of
S in {1, , N}, and similarly for TC.

Definition 3.2. Let 1<s<N,1<k<m and A > O. A matrix A E C'N satisfies the .0 -robust null
space property of order (s, k) with weight if there exist constants 0 < p <1 and T > 0 such that

\11IxsH + lIcTH  P  (1Ix se II1 + AlIcT-111) + rIlAx + c112,
1/ + A2k

for all sets S {1, , N} and T c {1, ... ,m} with ISI < s and ITI < k.

These definitions yield the following two results:

Lemma 3.3. If A E C'N satisfies the 0 -robust null space property of order (s, k) with weight > 0 and
constants 0< p < 1, T > 0 then  it satisfies the -robust null space property of order (s, k) with weight
• > 0 and constants p, TN/ s A2k.

bx E CN, c E Cm, (3.1)

Proof. Observe that

IlxsIli + AIICTIIi N[slIxsII2 +AA/TclIcTII2 + A2k \ llx4

We now use the definition of the 0-robust null space property. ❑

Theorem 3.4. Let 1<s<N,1<k<m and > 0 and suppose that A E Cr"N satisfies the 0 -robust
null space property of order (s, k) with weight À. Let x E CN, c E Cm , y E Cm and c > 0 be such that
llAx c YII2 < E, and suppose that (±, 6) is a minimizer of

zECN ,
midECn

rn 
+ Alldlli subject to IlAz + d — y112 < E.

Then

Ilx — xlli + Allc — 6111 < Cl (0-s(x)i + Auk + C2 s A2Ice,

and

(3.2)

Ilx — x'112 + Ilc — 6112 < 3 (1 + 711 4) (a s (x) Cr k (C)i.\/7, N/Tc + al (1 + E, (3.3)

where the constants C2, C3, al depend on p and T only and 71 is given by

s A2k
71 = ris,k(A) = min{s, A20. (3.4)

Proof. We first prove (3.2). Lemma 3.3 implies that A satisfies the £1-robust null space property. Let
S C {1, • • • , N}, ISI < s and T g {1, • • • ,m}, ITI < k be such that Ilxse = as(x)i and lIcTclli = ak(c)i.
Then, if v = x — & and e = c — e we have

11x111+AlIcIli + Ilvs.11i +AlleTch <21Ixsch + IlxsIli + + PAH. +

21Ixsdli + Ilvslli + + + IleTIli + Ph).

Rearranging now gives

Ilvselli + AlleT.Ili + IlvsIll)+ (2lIcT.Ill +

+(Pill +Allelli) — (IlxIli+AlIcIli)
2 (Ilxso lli +AlIcT.Ill)+ (PA. + AlleTIll),
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where in the second inequality we note that + IcIli 11±.111 since (x , c) is feasible and a)
is a minimizer. The 0-robust null space property now implies that

2 7—\/ A2k 

11 VSC Ili AlleTclli <— 1 +AlICTA11)+— p 1 p IlAv +eh,

and since Ilx,5,111 = as(x)i, = uk(c)i and

IlAv +42 a — YI12 + IlAx+e — yI12 2e,

we deduce that

Ilvs°111 1 

2

 p(a 
s(x)i Au k(c) 1) + 

1 
 s A2 k .

2r 

p
V 

Finally, to complete the proof of (3.2) we argue as follows:

+Allelli Ilvslli +AlleT111 + + AlleT.II1

(3.5)

(3.6)

(1+ p)(11vsclli + AlleTch) + TVs A2k1lAv

< 2
1

1 ±

 p
(o ,(x)i Au k(c) 1) 

1L p
r s + A2 ke .

Here, we use the 0-robust null space property in the second step, and (3.5) and (3.6) in the third step.
We now consider (3.3). Writing v = x — X and e = c — a as before, let S be the index of the largest

s elements of v in absolute value and T be the index set of the largest k elements of e in absolute value.
Define

Then

Ov = min Ivi Oe = min I ejl,iES jET
= max{0,„, Be/A}.

Ilvscfl + meTc = E + E ev +eeE ° (11v
ictS

Now observe that Bv < s1121V7s and Oe < l I eT 2 R/Tc, and therefore

< VIIvsH+ IleTH <  1 

min{,VS, AVT} min{VS, A \5} ( s +19 A2 k 
(11v sclli 2re)

where in the second step we use the £2-robust null space property and (3.5). Combining this with the
previous estimate and using the definition of 77 gives

1 P 
+ PIA 

rnin{A,/,;, Vs + A2k
(Ilvsch AlleTch)2 + 2re (Ilvsch AlleTch))

= A/Ti[pw2 27- ew] ,

where we have defined the non-negative scalar w as

w :=
+ A IleTch. 

Vs + A2 k

Completing the square with respect to w under the brackets yields

2 

r 

P\F7
2 21 re

IleT.112 19\1 ID \ff)re[( ) 
+
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Using the f2-robust NSP on the pair (v, e) along with the above estimate, we have

(H2+1102) N/IlvH+ IIeII2 = \/11'vsfl + + Irvs.H+11eTCH

N/11/A +11eTlIZ + OvsclIZ + lleTcH

< pw + 27-c + N/TY/71/4 jjrf

\/T0 G/T,+771/4)w+T (2+7/1/4) €

We note that

(3.7)

w = Ilvsc Ili + AlleTc Ili < IlvIli + Allelli 
'Vs + A2k — Vs + A2k

(3.2)

L 
Ci [  as(x)1  + A  ak(C)1  1 + C2c < Ci ras(x)i + ak(C)11 C

L- V s + A2k Vs + A2k _I -V7s N/Ic 
+ _2c

Combining the above with (3.7) proves (3.3). LI

3.2 The Restricted Isometry Property for the sparse corruptions problem

The robust NSP is typically difficult to prove directly. Hence we now introduce the Restricted Isometry
Property (RIP) for the sparse corruptions problem, and show that it implies the robust NSP. Note that
this has been defined previously in [21, Defn. 2.1].

Definition 3.5. Let 1 < s < N, 1 < k < m < N and A E Cri"N . The (s,k)th Restricted Isometry
Constant (RIC) S= (5,,,k of the matrix A is the smallest constant such that

(1 5) (llx11Z + MOD IlAx + cfl (1+ .5) (1lxfl +
for all x E Es and c E Ek. If 0 < .5s,k <1 then we say that A has the Restricted Isometry Property (RIP)
of order (s, k).

Our first result is the following:

Lemma 3.6. Let 1 < < N, 1 < k < m < N, A > 0 and A E C'N . If A satisfies the RIP of order
(2s, 2k) with constant

1

1 + ( 2 \l/  + .\/T7)
2

where n is as in (3.4), then A satisfies the t2-robust NSP of order (s, k) with weight A and constants
0 < p <1 and T > 0 depending only on (52s,2k •

The proof of this result is given next. Combining this lemma with Theorem 3.4 now yields our main
result:

Theorem 3.7. Let 1<s<N,1<k<m and A > 0 and suppose that A E C'N satisfies the RIP of

of

zEC-- ,dECrn 

order (2s, 2k) with constant (52,9,2k satisfying (3.8) and n as in (3.4). Lethx €,CN, c E Cm , y E Cm and
> 0 be such that 1lAx + c — y112 < c, and suppose that CX,e) is a minimizer

IlzIli+ subject to 1lAz d —

y

625,2k <

Then

IIx — xII1+ — 611 CI. (0- s(x)1 + Ao- k(e)i) + C2V s + A2 Ice,

Ilx — + Ilc — 6112 c3 (1+ 7/1/4) (os(x)1 + ak(C)1 + C (1 + 1/4)\/75 \a 4

where the constants C1, C2, C3, C4 depend on (528,2k only.

(3.8)
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We now prove Lemma 3.6. We first require the following:

Lemma 3.8. Let 1<s<N,1<k<m<N, and let A E C'N satisfy the RIP of order (2s, 2k) with
constant (525,2k• Suppose that x E Es and c E Ek are such that

IlAx + cll — (1Ix113 + 11c1ID = t (1143 + 11c1ID ,

for some t with 0 < 1t1 < 625,2k • If z E Es and d E Ek are orthogonal to x and c, respectively, then

1(Ax + c, Az + d)l < \✓I 61,,2k — t2 \ lilxfl + Ilc11\1114 +11dg

Proof. Assume that 11xH +11cH = Ilzfl + IldH = 1 without loss of generality. Let a, 0 E IR and -y E C and
notice that ax +-yz,Ox — -yz E E28 and ac+-yd,,@c— ofd E E2k. Therefore

11A(ax +7z) + (ac+O(d)11 (1+ 628,20 (1lax + '-rzll + Ilac +740

= (1+ (528,2k) (a2 (11x11 +11c11Z) +1712 (11z112 +11d110)

= (1 + (528,2k) (a2 + 1712) •
Note that in the second step we use orthogonality of the vectors x and z and c and d. Similarly,

11A(Ox — -yz) + (ac — -rd)11 (1 — (52s,2k) (02 + I-Y12) .
Subtracting the second equation from the first gives

11A(ax +7z) + (ac + 7d)g-1111(,Qx —yz) + (0c — 'Yd)11

(1 + (52.9,2k) (a2 + 1712) — (1 — (52s,2k ) (132 +1'712)
= 4528,2k (a2 + 02 + 210(12) + a2 —132'

On the other hand

IIA(ax + -yz) + (ac + -Yd)g—IIA(Ox — -yz) + (ac — -Yd)I1

= a211Ax +cll +171211Az +d11 +2Re (a(Ax + c), 7 (Az + d))

— 0211Ax + cll — 1-Y121111z+dll2 2+ 2Re (O(Ax + c),-y(Az + d)

= (a2 — 02) llAx + cll + 2(a + 0)Re (-Y(Ax + c, Az + d))

= (a2 — 02) (1 + t) + 2(a + 0)Re (/(Ax + c, Az + d)) .

(3.9)

Combining this with (3.9) gives

(a2 — 02) (1 + t) + 2(a + 0)Re (Y(Ax + c, Az + d)) < 62.9,2k (a2 + 02 + 21-y12) + a2 — 02.

Now let -y be such that 1-y1 = 1 and Re (y(Ax + c, Az + d)) = l(Ax + c, Az + d)1. Then, after rearranging,
we get

1(Ax + c, Az + d)1<
(625,2k — t) a2 + (628,2k + t) 02 + 2(528,2k 

2(a + 0)

We now seek values a and 0 which minimize the right-hand side of this expression. If t = 628,2k then the
minimal value 0 is attained by setting 0 = 0 and letting a —> oo. Conversely, if t < 6.28,2k the minimal

value is attained when a = \ 15x2
5,2k
+ 
—t, 

and 0 = el-,—. This gives
u2 

VAX + c,Az + d)1 
< \ MS 2 k — t2 /

which completes the proof. D
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j>1 j>1

Similarly,

which gives

Proof of Lemma 3.6. Let x E CN and c E Cm. To prove the 0-robust NSP for A it is enough to show that
(3.1) holds when S = So is the index set of the s largest coefficients of x in absolute value and T = To is
the set of the k largest values of c in absolute value. Given So, let S1 be the index set of the next s largest
coefficients of x in absolute value, S2 be the index set of the next s largest coefficients and so on. Define
T1, T2, ... in a similar way. We now have the following:

1lAxs. + CT°112 = (Ax so + cTo, Ax so + cm)

= (Axso + cT0, Ax + c) — E(Axso + cm, Axs, + cT3) •
j>1

Let 0 < ItI < 82s,2k be such that

MAx so + CT011 = (1 + (11xso11 IICT3110

and note that this gives

1(Ax so + cyb, Ax + c)1 + t\111xso11 11C7'01111Ax + C112.

(3.10)

(3.11)

(3.12)

For the second term of (3.10), we use the disjointness of So and Sj and To and TI for j > 1 in combination
with Lemma 3.8 to get

E(Axso + cTo , Axs, + )
j>1

\/(52,,2k — tYllxsog + IICTO112 E Oxs, 112 + 11CT, 112
j>1

Vqs,2k t2V1Ixso +Pm 11 E llxs, 112 + E 112 
(3.13)

j>1 j>1

Let xj+ and x— be the largest entries of xs, in absolute value. Then, by [12, Lem. 6.14], we have3

E X 3 1 + —4 (xi xl)
N/79 3

1CS

11 x5O111 N[s<  .v7s  + 4 x± <   N/7.9x+ < 
11xscll 1

° 1 + ll2.k 3 3+1/ — 
,V73 4 1 -VS 4 °

j>1

<   1 AlICTg111 + 11CT 11 ,E 11CT,112 + <— .,/k 4 AN/k 4 o 2
j>1

E llxs3112 IICT3112
min {-V

1 
7s, 

(11xs8111 A lICTO111) + Olxsoll2 + IICTO112).
3>i j>1

Therefore, combining this with (3.10), (3.11), (3.12) and (3.13) yields

(1+ + lIcTog +c112

+ \/638,2k — t2 ( 
1 

(PS6111 + AlICTill ) +  (llx.Soll2 + lIcTo112)
min {N/79, AM 1 4 '

11



k

Consider the function g (t) =  2 
62

s,2 

(1+0 

2 

2 
where 0 < t < - A28,2k • This function attains its maximum value at

62
25,2k

t = —82 and takes value there. Additionally <2s,2k J\kt 
1  . Hence we get

2s,2k A/1 52s,2k

\ /11x IICTO is Mx + c
— U2s,2k

ll 2

62s,2k 1 
(Ps8111+11CTA) + (11XS0 ll2 llcToll2)+  

— 63s,2k min {A/751A-VTc} 4

After noting that 11xs0112 +11CT0112 < NaVllxso 1122 +11CTO1122 and rearranging, we obtain

where

+ llcmg  A2k (11xsE,11 ) i +7-10x +c112,

2 N/625,2k 2A,W1 62s,2k
= n   NFI, 7 =   (3.14)
2v 2 V1 — 635,2k 62s,2k 2V2V1 — 645,2k 62s,2k

To complete the proof we note that p, T > 0 provided 628,2k < V8/9. This holds by assumption, since

11 > 2 and therefore the condition (3.8) implies that 62s,2k < V8/33 < V8/9. Also, after rearranging we
see that p < 1 if

(1
(2 1:\/2 

+ N/0 

2

) 635,2k < 1,

which again holds by assumption. ❑

Remark 3.9 The RIP for the sparse corruptions problem is a special case of the RIP in levels (RIPL),
introduced in [5]. The RIPL applies to vectors that are sparse in levels; namely, having different amounts
of sparsity in different (but fixed) sections of the vector. In the context of the sparse corruptions problem,
this corresponds to the concatenated vector z =[x;c], which is s-sparse in its first N entries and k-sparse
in its remaining rn entries. As a general tool, sparsity in levels has been used in the context of compressive
imaging [3, 4, 30], radar [11] and multi-sensor acquisition [9]. It is interesting that the same model also
occurs naturally in the, seemingly unrelated, sparse corruptions problem. We note in passing that Theorems
3.4 and 3.7 follow a similar approach to that of [5] with some changes made to incorporate the weighted
optimization problem.

3.3 Matrices that satisfy the RIP for sparse corruptions

We first recall the classical RIP for sparse vectors:

Definition 3.10. Let 1 < s < N and A E CmxN. The sth Restricted Isometry Constant (RIC) 6 = 68 of
the matrix A is the smallest constant such that

(1- 6)11xlIZ llAxfl (1+ 6)11xlIZ,

for all x E Es. If 0 < 6, <1 then we say that A has the Restricted Isometry Property (RIP) of order s.

To distinguish it from the RIP for the sparse corruptions problem (Definition 3.5), we shall refer to this
as the RIP for sparse vectors.

Lemma 3.11. Let 1 < s < N , 1 < k < m, A E CmxN and define

as,k = max 11AS T112, (3.15)

TC{1, ..,m},ITI=k

12



where As,T E CITNSI is the submatrix of A with entries {Aij}iETJEs • Suppose that A has the RIP for
sparse vectors with constant ås and that Qs,k < — ås. Then A has the RIP of order (s, k) for the sparse
corruptions problem with constant

ås,k =
2

Ss + +4,4

In other words,

(1 — 6.s,k) (11x1I +11c110 llAx (1 + 68,k) (llx11 +11c110

for all x E Es and c E Ek •

Proof. Let x E Es and c E Ek and write S = supp(x) and T = supp(c). Then

11Ax + cII2 =11Ax11 +11c11 2Re (As,Tx, .

By Young's inequality

21(A57x,c)1 2105711211421142 11A5,2"112 (11x11/e + ellc110

for any c > O. Hence

(1 — ås — 0-8,k 1 6)11xg + (1 — 0 e) + (1 + fis + ,k 1 0114Z + (1 + a 6)

Solving the equation Ss + cr.s,kIE = as,kc yields the value c=
Ss+. \✓/(V-k4cq

2a and substituting this value of c
into the previous expression yields the proof. ❑

This result shows that any matrix satisfying the RIP for sparse vectors also satisfies the RIP for the
sparse corruptions problem, provided the all k x s submatrices have small spectral norm.

3.3.1 Gaussian random matrices

Gaussian random matrices in the context of the sparse corruptions problem were considered in [21]. The
following result essentially recaps the main result for this case given therein. We include a short proof for
completeness:

Theorem 3.12. Let 0 < S,c <1, 1 < s <, 1 < k < m and suppose that

m> 6-2 (s • log(2N/s) log(2c-1)) ,

m > 6-2 • k • log(6-1).

(3.16)

(3.17)

Let A E ernxN be a matrix whose entries are independent Gaussian random variables with mean zero and
variance 1. Then with probability at least 1 — c, the matrix -,7T72 A has the RIP for the sparse corruptions

problem of order (s, k) with constant 6,,,k < S.

Proof. Lemma 3.11 asserts that A has the RIP of order (s, k) for the sparse corruptions problem with
constant 6,,,k < S provided (i) A has the RIP of order s with Ss < SIO and (ii) the constant as,k defined in
(3.15) satisfies us,k < 1 (20). Hence, by the union bound it suffices to show that (3.16) and (3.17) imply
both (i) and (ii) separately with probabilities at least 1 — c/2. Due to a standard result in compressed
sensing (see, for example, [12, Thm. 9.2]), property (i) holds with probability at least 1 — e/2 whenever
the condition (3.16) is satisfied. We now consider property (ii). First, notice that o-,,k is increasing in k.
Therefore, we may assume that k x 82 • m, i.e. k> 82 • m and k < S2 • m. Fix subsets S C {1, , N}
and T C {1, , m} with ISI = s and ITI = k. Then, due to a known result for singular values of random
Gaussian matrices (see, for example, [38, Cor. 5.35]), we have

P (105,T112 -V7s + + 2exp(—t2/2).

13



The conditions (3.16) and (3.17) imply that Vslm< 6/(6A and N/klm< 6/(6). Hence, by the union
bound

eN ( em 
k exp ( —m62/48) .P (crs,k > 61(2-M 

s k s 
<  exp(—m62/48) <

In particular, P (o-,,,k > (51(2A) < 6/2 provided

m > 48 • 6-2 (s log(eN/s) klog(em/k) log(26-1)) .

Since k 82 • m, we have log(em/k) < log(26-1). Hence this condition is implied by (3.16) and (3.17).
This establishes property (ii) and completes the proof. ❑

This result asserts that Gaussian random matrices can recover a fixed fraction k/m < c of corruptions
(see (3.17)) and (up to constants) the same level of sparsity s as in the uncorrupted case (see (3.16)).

3.3.2 Bounded orthonormal systems

Gaussian random matrices, while mathematically appealing, are of little relevance to multivariate approx-
imation using Polynomial Chaos expansions. In this case, a more suitable framework is that of bounded
orthonormal systems (see, for example, [12, Chpt. 12]):

Let D be a domain with a probability measure v and cbi, , ON be an orthonormal system of complex-
value functions in L2 (D). Recall that this system is bounded if

= suplcb,(01 K
eED

Given such a system, we construct the measurement matrix A as

1
A = {0.i( i)}71";.\[i=i E 

crixN

v M
(3.18)

where t, are drawn independently at random according to the probability measure v.

Theorem 3.13. Let A e Cm)<N be the matrix of a bounded orthonormal system, 1 < s < N and 0 < (5,c <
1. If

m > 6-2 • s • (log3(2s) • log(2N) log(6-1)) ,

then A satisfies the RIP for sparse vectors with probability at least 1 — e.

We remark in passing that the logarithmic dependence in s can be improved by one power, at the
expense of a larger factor in 6-1 [8]. However, this may not be best for the purposes of this paper, since
in view of Theorem 3.7, 6-2 scales linearly in the parameter ri (see next).

The following lemma estimates the constant cr,,k for matrices of the form (3.18):

Lemma 3.14. Let A E CmXN be the matrix of a bounded orthonormal system, 1 < s, k < N and o-,,k be
as in (3.15). Then

K2 sk

m

Proof. Fix subsets S C {1, , N},1,51= s and T C {1, , m}, 1T1 = k and let x E CN and c E Cm with
supp(x) = S and supp(c) = T. Then

1C*Axl
2 
= 

1

vT,

a 8,k <

Eci oi(toxi
iET j ES

1
  max
N/77 i=1,...,m

E (ti)x

jES .ET l 
 v —

K
m 
2 sk
  11x11211c112.

Hence 11 PT APS11 2 < IC72777k . This now gives the result. ❑
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With this in hand, we now deduce the following result:

Theorem 3.15. Let 1 < s < N, 1 < k < m, 0 < 6,c < 1 and suppose that

rn > 8-2 . K2 . 8 . (log3(2s) • log(2N) + log(6-1)) ,

and
m > 8 . 8-2 . K2 . 8 . k.

(3.19)

Then, with probability at least 1— c, A has the RIP of order (s, k) for the sparse corruptions problem with
constant Ss,k < 6.

Proof. Theorem 3.13 and (3.19) imply that A has the RIP of order s with Ss < SIV2 with probability at
least 1 — E. Moreover, Lemma 3.14 and (3.15) imply that cr,,k < 8/(2A. We now apply Lemma 3.11.

o

Remark 3.16 This result asserts that the number of corruptions that can be tolerated is a fraction of
m/s. This is inferior to the case of Gaussian random measurements, where Theorem 3.12 gives that a
fraction of m corruptions are permitted. We conjecture, however, that a similar estimate can be proved
for the bounded orthonormal systems case — indeed, a nonuniform recovery result of this form was proved
in [21] for the case of exactly sparse coefficients x and corruptions c with random sign sequences — albeit
with a substantially more sophisticated argument than the proof of Theorem 3.12. In particular, while
estimates for the singular values of matrices of bounded orthonormal systems are known [38], they are more
stringent than those for Gaussian random matrices. Using these estimates and arguing via the union bound
(as in the proof of Theorem 3.12) unfortunately results in an estimate similar to (3.15). We also note in
passing that while there exist RIP estimates for quite general matrices under the sparsity in levels model
[20] (see Remark 3.9), these unfortunately do not apply to the setup of the sparse corruptions problem.
We therefore leave the problem of improving (3.15) for future work.

3.4 Strategy for choosing A

Regardless of the matrix A, our main theorems (Theorems 3.7 and 3.13) suggest an optimal strategy for
choosing the parameter A. Notice that the restricted isometry constant 6 enters into the measurement
condition in Theorem 3.13 as 6-2. Since Theorem 3.7 requires that (3.8) holds, the measurement condition
contains a factor that is at least as large as

2

1 + ( 1
-
2N/2 

+ VT1) .

We wish to minimize this factor so as to reduce the measurement condition as much as possible. This can
be done by minimizing n, which in turn yields the theoretically-optimal scaling

A =
s

k.

Notice that this gives the value 77 = 2. In particular, the condition (3.8) becomes

(3.20)

(52s,2k < 1/8/33 •---,- 0.492, (3.21)

with right-hand side independent of s and k. We remark in passing that the choice (3.20) is implicitly
made in [21]. However, the condition given in [21, Lem. 2.3] is 82,5,2k < 1/18 Pe, 0.056 which is significantly
more stringent than (3.20). Moreover, [21] only considers exact sparsity, whereas Theorem 3.7 also treats
the case of stable recovery of inexactly sparse coefficients and corruptions.
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4 Numerical experiments

We divide our numerical results into two main sections. The goal of Section 4.1 is to study the behavior
of numerical algorithms in the context of the theoretical estimates presented earlier. In particular, we
investigate the influence that the regularization parameter A has on recovery properties. We confine these
investigations to problems with manufactured sparsity so that systematic studies may be carried out. The
lessons learned from these studies allow us to formulate and propose an iteratively reweighted alternative
to the one-time optimization (2.3). Note that none of our theoretical error estimates apply to algorithms
with weighted norms. However, weighted ti schemes can provide empirically superior results, e.g., [43].
Thus, we explore weighted algorithms because their use is natural from a practical point of view, but is not
in the scope of our theoretical analysis. Our simulations in this section use the SPGL1 package [36, 37].

The second collection of results, Section 4.2, focuses on more practical scenarios in scientific computing,
dealing with recovery of sparse or compressible polynomial Chaos expansions of solutions to parameterized
differential equations. Here we use the algorithmic lessons learned from Section 4.1 to illustrate the efficacy
and fault-tolerance of our approaches on realistic problems in the presence of measurement corruptions.

4.1 Recovery of manufactured solutions with sparse corruptions

This section is primarily concerned with the generation of phase recovery diagrams for the sparse cor-
ruptions problem. In particular, our tests here are not necessarily motivated by sensing matrices and
corruptions from function approximation, but instead are designed to understand behavior of the algo-
rithms. The following standard experiment for accomplishing this is carried out: We fix the number of
measurements m and the dictionary size N, and we vary the signal sparsity s and the number of mea-
surement corruptions k. For each s and k we generate an s-sparse signal x, and for a given model of
a measurement matrix A, we generate m measurements y from the signal x, and subsequently corrupt
(highly pollute) these measurements with a k-sparse vector c, whose non-zero entries are CZ, where Z is
a random draw from a certain probability distribution and C > 0 is a scaling constant. In this test, Z is a
standard normal random variable and C = 1.

We then run the recovery algorithm (2.3) for a given value of A, producing a recovered signal 2 and

measurement corruption vector a We define the recovery as successful if — 2112 + — -42 < Etol. In
this test, we set the success tolerance to be ctoi = 10-4.

In the test above, the generation of x, and of y, and of c, are statistically independent2. For each s
and k, the above procedure is run T E N times with independent draws, and an empirical estimate of the
probability of "success" is computed. In the phase transitions plots below, we use T = 10 simulations.

The phase transitions color each pixel, corresponding to a particular value of s and k, according to the
empirical success probability. The phase transition axes are s/m and k/m, and thus each ranges in the
interval [0, 1], but we truncate to [0, 0.5] in our plots because this region is sufficient to illustrate behavior.
We consider the following two models of measurement matrix A:

• Model 1: a Gaussian random matrix
• Model 2: a randomly-subsampled Discrete Fourier Transform (DFT) matrix

Note that Model 2 is an example of a bounded orthonormal system. We compare several different choices
of A for each model.

4.1.1 Phase transition plots for fixed

Figures 1 and 2 display the results for models 1 and 2 described above, respectively. Each figure shows
an array of plots; the columns correspond to differing values of m, increasing from left to right; the rows
correspond to differing values of A, increasing from top to bottom, except the last two rows, which show the
"optimaP value of A = Vslk suggested by the theory, and the iterative reweighting procedure described
in the next section.

2Measurement corruptions are generated as iid standard normal random variables, and support indices in a sparse vector
are generated using the uniform probability law (draws without replacement) on the index set.
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Comparing the results for A = lk (row 5 in the plots) with the other plots with A fixed, we see that

= lk does not behave optimally in practice, even though this is suggested by our theory. Indeed,
further experimentation reveals that the behavior of these transition plots changes notably when m is
varied. However, the following observations are consistent across all our runs:

• When there are few corruptions relative to the signal sparsity (k < s), larger values of A tend to
perform better. This general trend is consistent with the theory from previous sections: Our recovery
results are stated in terms of a quantity 71 defined in (3.4), and when k < s, we require large A to
make ri small.

• When there are many corruptions relative to signal sparsity (k s), smaller values of A tend to
perform better. Again, this is consistent with the theory in terms of the parameter n.

4.1.2 Iteratively reweighted fl minimization

The results from the previous section show that our a priori postulated optimal values of A are not optimal
in practice; this suggests that an adaptive learning of A may produce better results. See, for example, [7].
This section introduces an iteratively reweighted £1 optimization procedure that effects this learning of A.

We compute minimizers x and a using an initial value of A. We then update A based on x and a, and
then recompute minimizers with the new A. Such an approach not only allows for a single parameter A to
be updated, it also permits individual (i.e. non-equal) weights to be used for term in the regularization
functional. This aims to enhance recovery performance by both iteratively estimating an optimal weighting
A between the coefficients and corruptions term, and iteratively estimating the support sets of x and c.

We outline the procedure below:

• Step 1. Set r = 1, µi = 1 for i = 1, , N, and A = 1 for j = 1, . ,m. Prescribe noise tolerance €
and a small positive number 71 > 0.

• Step 2. Compute the solution (Z -C) to

min Ph + subject to 1lAz + d — < E,
zeCN,deCm 

where 11z111,0 = Ei=1 ,ailzi l and IIdIIi,a = Eim=i

• Step 3. Update it and A as follows:

1
=  + Ix. il,

1

Ai + Icil
(4.1)

• Step 4. If r < rmax, set r = r 1 and go back to step 2, otherwise stop.

Numerical results in the bottom row of plots in Figures 1 and 2 show this approach (implemented with
rmax = 10 iterations) significantly improves the recovery over a fixed choice of A. We therefore use this
iteratively reweighted £1 approach for optimization for all our simulations in the next section.

4.1.3 Large corruption values

This section is devoted to understanding the behavior of our algorithm with respect to the magnitude of
the corruptions.

We run the same experiment as outlined at the beginning of Section 4.1 on Model 2 (the measurement
matrix is a subsampled DFT matrix) using the iteratively reweighted algorithm outlined in Section 4.1.2.
For this test, we vary C between 1 and 106, and choose the random variable Z defining the corruptions as
a standard Cauchy random variable.3

3The point of generating from a Cauchy distribution is to show that measurement corruption by heavy-tailed distributions
does not adversely affect the algorithm's results.
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Figure 1: Phase transition for model 1 with fixed N = 256, varying m and A. Each column represents
varying values of m: from left to right, m = 42, m = 84, and m = 126. Each row represents different
values of À: rows 1-4 correspond to = 0.5, 1, 2, 3, respectively. Row 5 uses the value = N/slk that is
suggested as optimal by the theory. Row 6 shows recovery using the iteratively reweighted t1 algorithm.
Each pixel is colored according to its probability of a successful signal recovery for T = 10 trials based on
repeated random draws of x and c; yellow is probability 1, blue is probability 0.
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Figure 2: Phase transition for model 2 with fixed N = 256, varying m and A. Each column represents
varying values of m: from left to right, m = 42, m = 84, and m = 126. Each row represents different
values of À: rows 1-4 correspond to = 0.5, 1, 2, 3, respectively. Row 5 uses the value = N/slk that is
suggested as optimal by the theory. Row 6 shows recovery using the iteratively reweighted t1 algorithm.
Each pixel is colored according to its probability of a successful signal recovery for T = 10 trials based on
repeated random draws of x and c; yellow is probability 1, blue is probability 0.
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Figure 3: Phase transition for model 2 with fixed N = 256 and m = 75, varying the corruptions magnitude
C. (Left: C = 1. Middle: C = 103. Right: C = 106.) Each transition plot uses the iteratively reweighted
algorithm outlined in Sections 4.1.2 with the augmentations described in Section 4.1.3. The recovery
property of the corruptions algorithm is relatively agnostic to magnitude of the corruptions.

A straightforward application of the iteratively reweighted algorithm in Section 4.1.2 when C is very
large produces suboptimal results. The reason for this is the scale differential between x and c, so that
the algorithm heavily favors recovery of the corruptions and devotes little effort to recovering the signal.
To overcome this limitation, we leverage a significant advantage of our algorithm: Corruption indices and
values in the measurement vector are identified. This allows us to formulate a slight modification of the
algorithm in Section 4.1.2:

1. Run the algorithm from Section 4.1.2, generating computed solutions 2 and a

2. < CmaxllY then return the solutions x and a
3. If instead > Crnaa—ql, then define a support set for the vector c as

S = = 1, . . . , m Pill

and let Fs equal to c on S and zero otherwise.

4. Remove the large corruptions from the measurements and resolve with the measurements V <— y — Fs •
This yields a new solution pair 2" and a. Return x = 2" and c + c.

This procedure uses the algorithm to identify and remove highly corrupted measurements, and then uses
another instance of the algorithm to accurately compute the signal. We use the procedure above with the
choices Cmax = 10 and T =  1

5-VFn '

We can now generate a phase transition plot for a fixed value of C. Figure 3 shows the transition plots
for values C = 1, 103, and 106. We see that the algorithm detects and removes corruptions just as well
when C = 1 as when C = 106.

Remark 4.1 The iteratively reweighted procedure in (4.1) updates weights for both the corruptions (AO
and the signal (pi). Since our focus here is recovery of the corruptions, one may wonder which set of
weights is more influential. We have conducted tests in this direction by performing an experiment parallel
to the results in Figure 3, where we iteratively update À, according to (4.1), but keep /Li fixed at unity for
all i. Our results, shown in Figure 4, indicate that fixing the weights Ai results in significant deterioration
of the algorithm's performance when C = 1. However, it results in notable improvement of the algorithm
when C = 103 or C = 106. In the context of soft faults, the C = 1 behavior of the algorithm is more
relevant since when C > 103 it is likely that the corruptions can be easily identified and removed by other
means. In this small-C context, allowing both sets of weights µ2 and À, to vary appears to be beneficial.
On the other hand, the deterioration of the algorithm for very large C is an interesting phenomenon whose
investigation we leave for future work.
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Figure 4: Diagram complementary to Figure 3, here using fixed signal weights µi = 1 but varying the
corruptions weights Az in the iteratively reweighted algorithm described in Sections 4.1.2 and 4.1.3. Phase
transition for model 2 with fixed N = 256 and m = 80, varying the corruptions magnitude C. (Left:
C = 1. Middle: C = 103. Right: C = 106.) The results indicate empirical superiority of the algorithm in
Section 4.1.2 that allows both µi and Ai to vary, compared with fixing pi.

4.2 Recovery of compressible polynomial Chaos expansions

In this section we test our algorithm on more realistic problems in UQ: sparse recovery of multivari-
ate polynomial Chaos expansion coefficients with corrupted measurements. Polynomial chaos expansions
(PCE) [40, 14] have become a popular means of quantifying parametric uncertainty in expensive computer
simulations. To formulate our problem using our earlier notation, let f (0 denote a scalar-valued response
of a model (e.g., a differential equation) where E Rd is a random parameter appearing in the model.
The dependence of y on thus encodes uncertainty in the response. We are interested in building the
approximation xn0n(0, where {¢.„}n=i are computable orthonormal polynomials constructed
from the probability density of the random vector and we wish to compute the unknown coefficients
xn. In a CS recovery procedure, we construct m samples R7)-7 1 of the random vector collect the mea-

surements y3 = f (3), and then attempt to find a sparse coefficient vector x minimizing — Ax11, where
A is the measurement matrix with entries (A)3,„ = 0„(W. The underlying assumption is that
is expensive to evaluate so that m should be as small as possible. To focus our study on the corruptions
problem, we consider the case where the vector y can have a sparse number of entries that are polluted by
large-magnitude errors.

The models f (0 we consider here reflect the types of large scale models that are susceptible to soft
failures. However, these test models can be evaluated repeatedly with almost zero probability of corrup-
tions. Therefore, to simulate the effect of soft failures we randomly generate soft faults according to the
corruptions model from Section 4.1. After constructing components of y as PO , we pollute k of these
entries as described at the beginning of Section 4.1. In our tests below we fix a value r := k/m, the ratio
of corrupted measurements.

4.2.1 Genz test functions

We compare the algorithm presented in this paper against a classical £1 minimization approach in the pres-
ence of measurement corruptions for the purposes of computing compressible PCE expansion coefficients of
a function. A classical f1 minimization algorithm sets the corruptions vector d = 0 in (2.3) and minimizes
over all x E RN.

Our function PO will be one of the multidimensional test functions used by Genz [13]. For E 118d,
d E N, we investigate computing expansion coefficients for the following two functions on the hypercube
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[ —1, l]d:

f = exp [— —
j=i

zvi =

d f = TT d/ 4 

d/ 4 + — wi)2 
w3 =

("Gaussian")

("Product Peak")

We use d = 4 and d = 10 in our tests, with the dictionary elements Om given by tensor-product Chebyshev
polynomials of total degree 10 and 4, respectively, over [-1, l]d. We set the corruptions ratio to the value
r = 0.1 uniformly over all tests, and vary the corruptions magnitude C. After computing a coefficient
vector x solving either a classical problem or (2.3), we compute a discrete f2 error metric defined by

QE (f N (TO — f (7-0)2 , f N := E x.0.(0Q q=1 n=1

where Q = 103 for each test, and T q are iid samples drawn from the product Chebyshev distribution over
[-1, 1]d.

Figure 5 shows the result of this test. (See the figure caption for additional details of the test.) The
results indicate that when corruptions are present, a standard ti minimization algorithm suffers severe
degradation of the quality of the computed expansion coefficients. However, the corruptions algorithm of
this paper is able to compute accurate coefficients in the presence of corruptions, whether they have large
or small magnitude.

This example shows that there may be a penalty for using our algorithm when no corruptions are
present. This is mostly easily noticed in the product peak example with no corruptions (C = 0): The
corruptions algorithm of this paper computes a PCE that is less accurate than the result using a standard
f1 minimization approach. (Compare the black lines in row 3 of Figure 5.)

4.2.2 Damped Harmonic Oscillator

In this section we investigate the fault-tolerance of our algorithm for recovery of PCE coefficients in a
damped linear oscillator subject to external forcing with six unknown parameters. The model is

d2u 
(t + 

dt 

du

dt2 
+ ku = g cos(wt), (4.2)

u(0, = uo(0, 11(0 = 1 (

where we assume the damping coefficient -y, spring constant k, forcing amplitude g and frequency w, and
the initial conditions u0 and u1 are all uncertain, defining components of a 6-dimensional random vector
We solve (4.2) analytically to circumvent the impact of discretization errors in our study.
Defining = (ry, k, g, w, uo, u1), we restrict the components (-7) of to the following ranges:

(1) E [0.08, 0.12], (2) E [0.03,0.04], (3) E [0.08, 0.12],

(4) E [0.8, 1.2], .(5) E [0.45,0.55], (6) E [-0.05, 0.05].

We define 4 E R6 to be the range of defined by the product of these intervals. For any parameter
realization in 4 the harmonic oscillator is underdamped. In the following, we choose our quantity of interest
as f = u(20, We set the corruptions magnitude C as the mean of the function, i.e. C = Ee[f].

Figure 6 compares, as a function of the number of measurements, the error in classical .e1 recovery for un-
corrupted sparse recovery versus the iteratively reweighted version of the sparse corruptions fl optimization
proposed in Section 4.1.2. The results show that the sparse corruptions optimization notably outperforms
standard f1 minimization when corruptions are present, and is competitive without corruptions.

In Figure 7 we run the iteratively reweighted sparse corruptions optimization but vary the corruptions
rate r, and the corruptions magnitude C. The left-hand plot shows predictable behavior: increasing
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Figure 5: Approximation of sparse representations for Genz test functions in the presence of measurement
corruptions. Left: classical t1 minimization. Right: The corruptions algorithm of this paper. The top two
rows use a Genz Gaussian test function (d = 4 and d = 10), the bottom two rows use a Genz Product
Peak test function (d = 4 and d = 10). 10% of the measurements are corrupted in each test (r = 0.1), with
varying values of the corruptions magnitude C. Results over a size T = 10 ensemble are shown, with the
mean error plotted with a solid curve, and shaded regions around the mean demarcated by the 20% and
80% quantiles.
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corruptions has deleterious effects on the error in recovery, but notably the algorithm is reasonably stable
for increasing r. The right-hand plot shows that the algorithm is relatively insensitive to the magnitude of
the corruptions.

102
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ti
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Figure 6: Comparison of iteratively reweighted £1-minimization with classical £1-minimization (À = 0)
when constructing a PCE of the d = 6 harmonic oscillator in the presence of (left) corrupted data with
r = 0.1 and C = 1 and (right) no failures.
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Figure 7: Effect of the corruption rate r (left) and magnitude C of corruption errors (right) on the PCE
of the d = 6 harmonic oscillator constructed in the presence of failures using ii-minimization with various
choices of À. To generate the left and rights plot we set C = 1 and r = 0.1, respectively.

5 Summary and conclusion

We have developed novel theoretical guarantees and algorithms for recovery of sparse or compressible signals
where measurements have been polluted by high-magnitude corruptions. Our results are uniform theoretical
recovery estimates for general linear systems where the measurement matrix satisfies a corruptions-based
RIP-like condition.

We have refined an existing regularized £1 minimization algorithm into an iteratively reweighted
minimization algorithm that shows superior performance for the examples that we have investigated. An
application of these examples to recovery of polynomial Chaos expansions from model UQ problems il-
lustrates that our algorithms are resistant to highly-corrupted measurement data that may result from
hardware or software faults in modern large-scale parallel computing paradigms.

Empirical tests suggest that refinements of our algorithm is relatively stable with respect to the mag-
nitude of the corruptions, but our theory is not applicable to these algorithmic refinements and some
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observed behavior (e.g., Remark 4.1) remains theoretically unexplained, which can be the subject of future
explorations.
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